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One of the fastest growing areas in the field of education today is the
area of individualized instruction instruction in which content_;
organization; or pacing is modified for each individual. Although
individualized instruction comes in many forms (e.g.; personalized_sySteMS of
instruction; computer assisted instruction, individually prescribed
instruction; and programmed instruction), all of these_forms share the same
basic design. All are basically sequences of instructional units through
which subjects are routed by means of a series of tests.

The way in which the units of instruction are sequenced and -the routing
decisions made are two of the more crucical components -of any individualized
instruction program. While they have been the topic of considerable research;
as yet no generally accepted procedures_ have been developed for these

components. The purpose of this paper is to propose anew procedure for
developing; evaluating, and implementing routing procedures for use with
individualiied instruction otogtatii§. Specifically, a model will, be proposed
for describing the relationship between performance on sequentially arranged
units of instruction, -and procedures for using the model to evaluate
Sequential relationships and fetmakingroutingdecisions will he discussed.
Then a procedure for estimating the parameters of the model will be
discussed; Finally; empirical data will be presented to support the validity
of the model. Before beginning the discussion of this procedure, however,
some theory abdut the nature of sequential units of instruction will be

presented as a basis for the procedure.

Sequential Units of Instruction-

Underlying Theory

The basic assumption underlying the sequential arrangement of units of
instruction is that performance on module 2 requires the prior knowledge of
the material contained in module 1; It might be true that all material in
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module 1 must be mastered before any (or at least any appreciable_ amount) of
the material in module 2 can he mastered, or it may be the case that certain
sections of module 1 are prerequisite for certciia sections of module 2. For

this paper; the former will he assumed to be the case. It will also be
assumed that the tests that measure the skills taught in the modules are
unidimensional.

To say that a sequential relationship exists means that a certain level
of performance is required on module 1 (mi) before Yearning on module 2 (mo)

can begin. Once that level (ci) is achieved; learning on m2 can begin.

improvement above level ci on mi facilitates improvement on ml. Once the

mastery level on mi (c2) is achieved; additional learning on mi does not

facilitate learning on m9. This relationship is illustrated in Figure 1.

This type of figure is called a module characteristic curve, or MCC.

For the relationship shown in Figure 1, the vertical axis is the
proportion of examinees passing m2. The horizontal axis is the examinee's

status (level of achievement) on ml. As can be seen, the relation is

horizontal until the level of achievement on mi designated by ci is reached.

At that point a linear relationship between status on mi and performance on m2

is depicted. When the mi mastery level, c9; is reached; a horizontal relation

is again present, indicating that further improvement on mi does not aid

performance on m9. Of course, the relationship in the range from cl to c2

need not be a linear one, and in reality examinees would be expected to fall
in a scatter around the curve shown in Figure 1.

The low end of the curve shown in Figure 1 is not at zero; nor is the top

at one It would he expected that some small portion of examinees might pass
m2 even with very little learning on mi. This would be due to chance or other

factors, and would generally be a small proportion of the total number of
examinees. It would also be expected that some portion of examinees who had
mastered ml would fail m2, simply because of failure to master the m2 material

not included in mi.

Ad IlltiA-tratibil_

In order to illustrate the processes described above, simulation data
were generated according to the following process. Item parameters for the
threeparameter logistic (313L) model (Birnbaum, 1968) were selected for two
thirty item modules; Examinee mi achievement levels were randomly selected
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from a normal distribution with a mean of zero and a standard deviation of
1.5. The c1 value was set equal to 0 (achievement level) = -1.0, and cl was

set equal to e= 0.5. Mastery of m9 was arbitrarily defined as seventeen

correct out of thirty items.

For each examinee, an m9 achievement level was selected as follows. If

the examinee's m
1 1
achievement level (0-) was less than c-- the examinee's m7

1'

achievement level (80 was randomly selected from a normal distribution with a

pleanof-1.0iandastandanideviationof0.5.Ife->c1, but

was randomly selected from a normal distribution with a mean of Al and

standard deviation of 0.5, If 8 >
1

c2, was randomly selected from a normal

distribution with a mean of 0.5 and a standard deviation of 0.5. Table 1

presents a summary of the relationship between e1 and O O. Using e_ and the

module 2 item parameters, response data were generated for module 2 according
to the 3PL model for 1000 examinees.

Figure 2 shows a plot of 8
1

by 8 for the 1000 simulated examinees; As

can be seen; below -1;0 on the 8-
1

scale there is a correlation of about zero

between 0
1 2 1 1

and e-. Between 0- = -1;0 and 0- = 0.5 there is a positive

correlation between 61 and e1. Above 01 = 0.5, there is again no correlation

between 8- and 89

Figure 3 shows an empirical MCC for the generated data. The empirical
MCC was computed by grouping examinees into intervals of the ability scale on
the basis of 61: For each interval, the proportion of examinees in that

interval who passed
2
was computed and plotted against the interval

midpoint. As can be seen; the plotted values form a rough approximation to
the curve shown in Figure 1.

The Procedure

The Model

The procedure proposed for use with sequential units of instruction is
based on the notion of the MCC. An MCC describes the probability of passing a
unit of instruction (module) conditional on latent ability (achievement level)



on the prerequisite module. The form of the MCC proposed in this paper is the
fourparameter logistic (4PL) model, which is given by

Pj (0,_) + e:3 ) + EXP
j
a- (0- b ))]-1ik j (1)

where 0ik is the latent ability of examinee k on module i (the prerequisite

module), Pi(Bik) is the probability y of passing module j given ability 0, aj

is a discrimination parameter associated with module j, is a difficulty

parameterassociatedwithmodulej,c.is a lower asymptote parameter for

module j, .
is an upper asymptote narameter for module 1; D = 1.7, and EXP(x)

The term is used to account for the nonzero probability of passing

module j for examinees with very low ability on module 1, and the e term

accounts for the nonu1ity probability of passing module -j for examinees of

very high ability on module i.

Figure 4 shows a 4PL MCC. The aparameter is related to the slope of the
MCC at the point of inflection; while the b parameter serves to locate the
point of inflection on the ability scale.

Using the Model

Interpreting the Parameters. Using the 4PL model in conjunction with
sequential units of instruction involves estimating and interpreting the
parameters of the model. The slope of the MCC; as indicated by the a
Parameter, represents the strength of the sequential relationship. A steep

slope indicates that small increases in achievement on the prerequisite module
yield large increases in performance on the subsequent module._ This -would he
indicative of a strong sequential relationship. A relatively flat_MCC
indicates that even large increases in achievement on the_firstmodule do not
yield substantial improvement in performance -on the second module. This would

be indicative of a weak sequential relationship. Thus, the aparameter serves
as an indicant of the strength of the sequential relationship.

The bparameter helps to indicate what level of performance is required
on the first module to attain a given levr.1 of performance on the second
module. If the bparameter for the MCC shown in Figure 4 were increased, the
curve would be shifted to the right; If this were the case; a greater level
of ability would be_required on module lto attain the same level of
performance on module 2 as was the case_before the curve was shifted; Thus;

the bparameter locates the module on the achievement scale.
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The c-parameter is a 'pseudo-guessing' parameter. It_represents_the
probability of passing module 2 even when little or none of the material of

module I has been mastered. A large value for c indicates that much of the
material of module 2 can he learned without knowledge of the material in
module I. Thus; the c-parameter is an_indicant_of the degree to which all of

nodule 2 actually requires knowledge Of modUle 1 material.

The e-parameter is a retlection of the fact that_ module 2 contains
instruction and material beyond those in module I. Perfect mastery of module
1 does_not guarantee mastery of nodule 2. That is, module 1 is necessary but

not sufficient for module 2. The greater the value of e; the more that module
2 requires knowledge beyond what is required for mastery of module 1.

Setting . The goal of setting a pass/fail cut score for

module I is to minimize the number of examinees failing module_2_and to
minimize the number of examinees 71-1() could have passed module 2 but are held

back; If these two types of errors are considered equally serious, then the
most obvious procedure for setting a cut score for_module 1 is to determine
the level of ability on module I for which_the_predicted Probability of
success on module 2 is 0.5. Setting equation 1 equal to 0.5 and solving

for e yields

(In ir 9 / )
0.5 - e

(2)

where 8- is the pass/fail cut score for module I; In(x) is the log to the base

e of x, and the other terms are as previously defined.

Once estimates of the MCC parameters and examinee ability parameters have

been obtained,
t

is calculated from (2). Examinees for whom 0 (estimated

achievement) > e considered masters of module 1 and are routed to module 2;

Examinees with 8 < 8- are considered nonmasters and are not allowed to proceed

to module 2.

_Parameter Estimation

The procedure for estimating the item parameters of the 4PL model selected
for this research is based on a maximum likelihood estimation Lechnique. An

iterative procedure based on the Newton-Raphson approach to solving
simultaneous nonlinear equations is employed.



Criterion Function

The estimation procedure is designed to maximize the criterion tunction
given by

N I-

L = it P: 3 0:
1 .1

=
(3)

where L is_the likelihood of the string of obServed outcomes (passes and
failures) for a module; N is the number of examinees , isu. is the module outcome

(zero for fail, one for pass) for examinee j; and is 1-P1. is given

(1). In Orattice; (3) is maximized by minimizing the negative of the
logarithm to the base e (natural logarithm) of L. That is; L is minimized
where

= loge(L) . (4)

Estimation Procedure

The Newton-Raphson_procedure employed reqUireS the first and second
partial_ derivatives of (4), taken with respect to the item parameters. If _f_'

is a column vector of first derivatives, and f" is the matrix of second
derivatives; then fordny_Set Of provisional item parameter estimates; updated
estimates are obtained using the following formula:

fi+1 = fi

where (1 is the vector of item parameter estimates after iterationi; and f1+1

is the vector of item parameter estimates after iteration i + The first
and second derivatives of (4) are given in the Appendix. In a given__
iteration; these derivatives are evaluated using the estimates from the
previous iteration.

One problem which is encountered in a procedure like this occurs when the
matrix of second derivatives; given by _f_"; is not positive definite. The



NewtonRaphson procedure guarantees convergence only when is always

positive definite. When a model such as the 4PL model is used; the matrix of
second derivatives, evaluated at the provisional item parameter estimates, _

very often is not positive definite; Therefore; it is necessary to check f"
for positive definiteness. If it is not positive definite; it should be
forced to be positive definite; A number of procedures for doing this have
been proposed.

Work is currently underway on a program implementing the above estimation
procedure. At this point research is underway to determine the optial
procedure for forcing the matrix of second derivatives to be positive
definite. it is hoped that a working version of the program will be available
shortly.

Example

In order to illustrate the operation of the estimation procedure lust
described, a preliminary version of the 4PL estimation program was applied to
the simulation data generated in the previous section of this paper and for
which the empirical MCC is shown in Figure 3; The true ml achievement levels

were used as input to the estimation program.

Table 2 shows the item parameter estimates which resulted from the
application of the 4PL estimation program to the simulation data. Figure:5
shows the empirical MCC shown in Figure 3; with an overlay of the theoretical
MCC computed using the item parameter estimates shown in Table 2._ As can be
seen; the theoretical curve shown in Figure 5 provides a reasonable
description of the observed data.

Evidence for the Validity of the Model

Method

For_the_purposes of acquiring evidence to either support or discredit the
4PL model and_the MCC concepti_real response data were collected for a two
part arithmetic test. It was hypothesized that the two parts of the test were
such that the skills required for performance on the first part would be
prerequisite to performance on the second part. Using these two parts as
modules, empirical MCCs were plotted for various pass/fail cutoffs on the
second module. These plots were then examined as evidence of the usefulness
of the 4PL model for use with these data; Details of the process follow.

Data. The test used for these analyses was the Numerical Skills subtest
of the Career Placement Program (CPP) test (The American College Testing
Program, 1983). Tha first part of the test, module 1, is comprised of
nineteen fourchoice multiplechoice arithmetic computation problems, while
the second_partj_module 2, is comprised of_thirteen rourchoice multiple7
choice word problems that require arithmetic computation skills and problem
solving skills. Response_data for these items were collected foc 3768 cases
frim the 1983 norming administrations of the test.

Since there is no already determined pass/fail cutoffs. for the CPP
subtests, the analyses performed in this stage of the research were repeated



for a number of different cutoffs for module 2; so as to avoid any
capitalization on chance from the cutoff selection; Using a given pass/fail
cutoff for module 2, each examinee was assigned a score of 0 (fail) or 1

(pass) depending on whether the examinee's raw score on module 2 exceeded the
cutoff for module 2. These 0; 1 data; along with examinees' achievement level
estimates from module 1; were the input for these analyses.

Ability Estimation; The achievement level estimates on module i for the
examinees were obtained through the application of the 3PL model to the
examinees' response data for module 1. The LOGIST estimation program
(Wingersky; Barton; and Lord; 1982) was used to estimate the parameters of the
3PL model.

Plotting MCCs._ The initial step in these analyses was_thedivision of the
achievement scale into a number of narrow intervals (0.1 width). Examinees
were then sorted into these intervals on the basis of their module 1

achievement level estimates. For a 'Ziven module 2 pass/fail cutoff, the
proportion of examinees within each interval passing module 2 was computed.
For each module 2 cutoff, the proportions passing module 2 were plotted
against the interval midpoints, thus 'forming an empirically derived MCC.
Adjacent intervals were conapsEd to assure an interval sample size of at
least ten; These MCCs were exkmined to assess the reasonableness of the 4PL
model for describing the form of the resulting curve.

Results

Figures 6 through 12 show the empirical MCCs obtained for the CPP data
for pass/fail cutoffs on module 2 of three through nine correct out of the
thirteen items, respectively. Table 3 shows the obtained proportions passing
plotted in Figures 6 through 12. Table.3 also shows the numbers of examinees
in the different intervals.

As can be seen from these figures; the relationship betaeen module 1

ability and module 2 performance does appear to beat least a monotonically
increasing one. Also, for several of the plots, there appears to be a non
unity upper asymptote. It is, however, diffir.lt to discern a lower asymptote
in these plots; Of course, a lower asymptote of zero is a special case of the
4PL model. Tt may eventually be fruitful to drop the lower asymptote; but as
yet there is little evidence to support such a step.

There are a couple of interesting trends evident in Figures 6 through
12. As the_pass/fail cutoff score on module 2 increases, of course, fewer
examinees of low achievement level on module 1 pass modulo_ 2. _If the_material
in module_2 requires the knowledge of module_l material* clearly requiring
more module 2 material for passing will require more module 1 material.

As the module 2 pass/fail cutoff increases, the upper asymptote of the
MCC decreases (the e term increases in value). This is an indication that
complete knowledge of module 1 is not sufficient for guaranteed success on
module 2. Another way of saying this is that word Problems require more
knowledge thansimply mastering arithmetic operations;

The patterns evident in these figures suggest that, if module 2 were
still easier to pass than was the case with the pass/fail score of 3; there
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would he a nonzero lower asymptote to the MCC. Unfortunately; for this
particular test lower cutoffs yielded an almost flat MCC near unity. Almost
all examinees got at least two items correct on module 2, regardless of their
module 1 ability.

Summary and Conclusions

While this research project is still incomplete, it has yielded
encouraging results. A theory relating performance on sequentially arranged
units of instruction was derived, and a model for desribLng that relationship
was formulated. Procedures for using the model to evaluate sequential
relationships and for making routing decisions were_ described. A procedure
for estimating the parameters of the model was outlined, and data supporting
the validity of the model were presented. All things considered, the model
and procedures described appear to_be useful ones, and they appear to merit
continued research efforts directed toward their development.
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Appendix

Derivatives of the Negative of the Natural

Logarithm of the Criterion Function

The negative of the natural logarithm of the criterion function; denoted

by L was given by (4). The vector of first derivatives with respect to the

Item parameters, denoted by f' , is given by

-7"

N (P. c)(u. P:)
E_ (0, = 1 -I .1

j ==-1

p, o, + EXP (X,j )]
-3

N (Pi t)(ii P)
a E 1 1 :I

P. 0,[l + EXP (X :)j
.1=1 3 3 3

N u: P:
_3

1=1 3
P, 0,[1 + EXP (X) I

N (i: P.) EXP (X.)

7 F1

3 ;

Pi 011_1 + EXP (X0
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t;iherel)..--13,(0;)i.Q3 =1 P.- x1 = Da(01 b), and the remaining terms areJ

as defined for (1). The matrix of second derivatives, denoted by f", is given

by

f_" =

32 32 a2 32

Tcz L aaab L as ac L @aae L

32 _32

ab L * @b@c L
-* a2

Dbae Li

32 32

37. L * 3t 3e L

a2
TeZ L *

The matrix is sympfettit. The individual terms in the matrix are given by:

a2

Ta72- L*

N

E (0. b)2 (13,

3=i 1

32
* = D2a2 E

Tb-2. I;

3=1

32

L

P.1.c)

OU.0 P. Q. P;e EXP(x.)(o P,)
1 J sl 3

1).2()J .1-1-EXP
3J

Q1cu.
3

+ P.3
1

e EXP(x)(u, P1)
1

P:z Q.z [1 + EXP (x.).12
J

2P; + P-2
E

Pi Q. + EXP (I )1

32 N P-2 '213- U +
* = E EXP( 2x , j

672- L 3 P.z 0.z
j j j

1 + EXP(x.)jz
J =1 3 3 J



@2

Daab L * E (P,

j=1

u: P.
1

13

x, 0-CU- P. 0: P:e EXP(x;)(u.-:.
1 *3

P-r 0: [1 + EXP (x, )

1

P. Q, 1 + EXP (X.
3

2 N Q:cu. P.e EXP (x, ) (u. P.)
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1 1

ab3c L P. 0, 1 + EXP (X,j=1 3 3

a2
N
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J J .1 3
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1

p;2 p, u, + Q. u3.

3
b2

J 31c = E EXP (x. )
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Table 1

Summary of Relationship Between and 9?

02

> c
1 1

< e- <
9

<
811

89-- 0.5)

°2
N( , 0.5)

N(0;5, 0;5)

Table 2

Item Parameter Estimates
for Simulated 4PL Data

Parameter Estimate

e

1.175
0.160
0.021
0.076
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Table 3

Sampl Sizes and Proportion Passing
for Each Achievement Interval on m

Sample Cutoff on

Interval
Size 3 4 __ 5 6 7 8

1 11 0.091 1).000 0.000 0.000 0.001) 0.000 0.0002 10 0.100 0.000 0.000 0.001) 0.000 0.000 0.000
3 15 0.333 0.133 0.057 0.000 0.000 0.000 0.0004 16 0.500 0.188 0.062 0.062 0.000 0.000 0.000
5 20 0.250 0.200 0.100 0.000 0.000 0.000 0.000
6 16 0.250 0.125 0.000 0.000 0.000 0.000 0.000
7 13 0.231 0.077 0.000 0.000 0.000 0.000 0.000
8 26 0.423 0.192 0.038 0.000 0.000 0.000 0.000
9 34 0.382 0.265 0.088 0.059 0.029 0.000 0.000

10 29 0.414 0.207 0.103 0.069 0.034 0.000 0.000
11 34 0.294 0.118 0.000 0.000 0.000 0.000 0.000
12 32 0.375 0.250 0.094 0.063 0.031 0.031 0.000
13 43 0.558 0.395 0.186 0.047 0.047 0.023 0.000
14 60 0.400 0.200 0.150 0.067 0.000 0.000 0.000
15 59 0.525 0.305 0.119 0.051 0.017 0.000 0.000
16 65 0.631 0.477 0.323 0.185 0.092 0.046 0.015
17 70 0.471 0.300 0.200 0.157 0.043 0.029 0.029
18 87 0.655 0.414 0.195 0.103 0.069 0.034 0.023
19 89 0.517 0.360 0.169 0.090 0.022 0.011 0.01120 71 0.606 0.479 0.296 0.155 0.113 0.056 1.00011 79 0.684 0.519 0.329 0.177 0.114 0.025 0.025
22 101 0.653 0.465 0.317 0.228 0.089 0.050 0.03023 89 0.629 0.416 0.326 0.213 0.112 0.045 0.00024 103 0.709 0.583 0.398 0.223 0.097 0.068 0.029
25 114 0.789 0.605 0.456 0.333 0.211 0.149 0.061
26 99 0.808 0.737 0.657 0.444 0.323 0.192 0.09127 143 0.790 0.657 0.497 0.371 0.259 0.189 0.126
28 112 0.777 0.625 0.545 0.438 0.277 0.161 0.11629 122 0.820 0.730 0.590 0.467 0.320 0.189 0.07430 120 0.800 0.717 0.667 0.517 0.350 0.250 0.20831 155 0.845 0.742 0.671 0.606 0.445 0.368 0.29732 116 0.914 0.767 0.724 0.612 0.431 0.293 0.18133 102 0.912 0.833 0.775 0.667 0.598 0.431 0.34334 112 0.884 0.821 0.741 0.643 0.571 0.455 0.33935 142 0.923 0.852 0.768 0.599 0.507 0.437 0.26836 78 0.949 0.859 0.782 0.679 0.538 0.410 0.30837 49 0.837 0.735 0.592 0.490 0.429 0.388 0.265
38 72 0.889 0.833 0.722 0.667 0.583 0.458 0 37539 54 0.963 0.889 0.778 0.667 0.630 0.444 0.37040 129 0.938 0.899 0.845 0.752 0.705 0.636 0.49641 122 0.918 0.869 0.836 0.779 0.697 0.549 0.40242 82 0.951 0.878 0.780 0.659 0.524 0.488 0.48843 20 1.000 0.900 0.850 0.700 0.550 0.500 0.40044 29 1.000 1.000 1.000 0.966 0.838 0.690 0.552
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Figure 1

Theoretical Relationship
between Performance on Two Modules
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Figure 2

Relationship between Achievement Levels
on Modules 1 and 2
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Figure 3

Empirical MCC for Generated Data
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Figure 4

A 4PL MCC
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Figure 5

Empirical MCC for Generated Data
with an Overlay of the Theoretical MCC
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Figure 6

Empirical MCC for CPP Data
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Figure 10
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Figure 12
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A Latent Trait Model for Use with Sequentially
Arranged Units of Instruction

Abstract

A theory relating performance on sequentially arranged units of
instruction was derived, and an item response theory model for describing that
relationship was formulated. _Procedures for using the model to evaluate
sequential relationships and for making routing decisions were described. A
procedure for estimating the parameters of the model was outlined, and data
supporting the validity of the model were presented. Overall, the model and
procedures appeared to be useful ones, and they appeared to merit continued
research efforts directed toward their further development.






